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Abstract 

     The paper presents a new recursive technique using Taylor series in state analysis and optimal 

control problems of time varying systems. The operational matrix for integration of fixed interval 

lengths and Kronecker product approach is required in traditional methods, whereas this method 

does not follow the same strategy. Numerical examples are treated to justify the proposed method 

and the results obtained are compared with the exact solutions via related tables and graphs. 

However, the recursive technique is proved to be acceptable over other methods because of its 

elegance and simplicity and thereby makes Taylor series as a powerful tool.  
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1. Introduction 

     The Taylor expansion was introduced a long days back in 1715 by Brook Taylor to 

approximate a function as an infinite sum of terms calculated from the values of its different 

order derivatives at a single point. Despite the concept being age old, over three centuries it has 

proved its potential in many areas of mathematics.  Here, the state analysis and optimal control 

problem has been investigated via the Taylor series in recursive way. Although it had been 

employed in different way involving operational matrices in earlier papers, [1-4], but such matrix 

and subsequently matrix inversions are entirely avoided in proposed algorithm.  

State space problem of time varying systems has already been dealt with orthogonal functions 

such as Haar, Walsh, block pulse, and as well as by Legendre polynomial, Taylor series even 

with triangular functions, hybrid functions. The Taylor series were used for delay systems, 

singular systems, linear time invariant and nonlinear systems [2-6, 8]. Optimal Control problems 



120 

 

are studied using several polynomials such as Legendre, Laguerre, Taylor, Chebyshev [2, 7] etc. 

However, these works never focused on recursion so that the computation can be much faster.  

2. Function approximation via Taylor series 

     Any function f(t) defined over t [0, T) can be approximated by a Taylor series around a 

specific point where it is differentiable 
k
μ , 0,k Tμ   

by,                          
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Let t [0, T) is divided into m sub-intervals of equal width h, so, =
T

h
m

. Let, 
k

khμ  , where k = 

0, 1, 2,… , (m-1), equation (1) can be modified for first and second order Taylor series into, 

        1f t f kh f kh t - kh f t


   (say)                                                                                 (2)
 

and         
 

 
2

2
2!

t - kh
f t f kh f kh t - kh f kh f t

 

    (say)                                                     (3)       

Further, (2) and (3) can be restructured by,       1 1 1f t f kh f kh t - kh


                                  (4) 

and         
 

2

2 2 2 2
2!

t - kh
f t f kh f kh t - kh f kh

 

                                                                       (5)  

assuming that approximation    1f t f t  and    2f t f t  i. e.,    1f kh f kh  and 

   2f kh f kh  using first and second order Taylor series for t=kh. From (4) and (5), the 

approximation can be determined by putting t=(k+1)h, as     1 1 1{( +1) }f f kh h f khk h


    (6) 

and      
2

2 2 2 2
2!

{( +1) }
h

f f kh h f kh f khk h
 

                                                                         (7)  

Now, assuming ( 1)
k

k hμ   ,  equation (4) and (5)  becomes  

          1 1 1 1 1 1f t f k + h f k + h t - k + h


                                                                     (8) 

             
  

2

1
2 2 1 2 1 1 2 1

2!

t - k + h
f t f k + h f k + h t - k + h f k + h

   
     

                              (9)  

The approximation in (k+1)-th interval  ( 1)t kh k h ,  can be determined for sample at t=kh as, 

     1 1 1 1 1( )f f k + h h f k + hkh


                                                                  (10) 

          
2

2 2 1 2 1 2 1
2!

h
f kh f k + h h f k + h f k + h

 

                                              (11) 
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This can give an idea of approximation for different index k, k=(m-1), (m-2), …, 2, 1, 0. Thus, 

equations (6), (10) and (7), (11) results the approximation using first and second order Taylor 

series respectively along time axis but only the difference is (6), (7) is determined for k=0, 1, …, 

(m-1) while (10) and (11) is determined for k=(m-1), (m-2), …, 2, 1, 0.  

Now, state equations of linear time varying systems are solved using both first order and second 

order Taylor series based upon the recursive technique elaborated in equations (6) and (7) 

respectively. 

 

3.  Analysis of linear time varying system   

The state equation of a linear non-homogenous time varying (LTI) system is  

        ( ) ( ) ( ) ( ) ( )t t t t t


 x A x B  u   and  (0) 
0

x x                                                              (12) 

Differentiating (22),  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t
   

  x A x + A x B u B u                          (13) 

The state approximation in first and second order Taylor domain being ( ) 1( )t tx x  and 

( ) 2( )t tx x , i. e., at t = kh , ( ) 1( )kh khx x  and ( ) 2( )kh khx x , (12), (13) are modified into 

1( ) ( ) 1( ) ( ) ( )kh kh kh kh kh


 x A x B u                                                                          (14) 

and 2( ) ( ) 2( ) ( ) ( )kh kh kh kh kh


 x A x B u                                                                   (15)                                                                                                                      

       2( ) ( ) 2( ) ( ) 2( ) ( ) ( ) ( ) ( )kh kh kh kh kh kh kh kh kh
   

  x A x + A x B  u B  u                  (16)      

Following (6) and (7), the recursive equations for states via first and second order Taylor series is  

1{( +1) } = 1( )  1( )k h kh h kh


x x x                      
                                                         

(17) 

and 
  

2

2{( +1) } = 2( ) ( ) ( )2 2
2!
h

k h kh h kh kh


x x x x                                               (18) 
                                         

Substituting (14) in equations (17) and in similar way (15), (16) in (18),  

1{( +1) } =  ( ) 1( ) ( ) ( ) k h h kh kh h kh kh  x A x B u                                                        (19) 

2 2
22{( +1) } ( ) ( ) ( ) 2( )

2! 2!
h h

k h h kh kh kh kh
 

 
 
 

  x  = I A A A x  

           
22 2

( )  ( ) ( ) ( ) ( ) ( ) ( )
2!2! 2!

hh h
kh h kh kh kh kh kh kh

 
 
 
 

u B + A B + B B  u
          

(20) 

Equations (19) and (20) provide a recursive solution [8] of the state vector x(t) for the linear time 

varying system described by (12). Knowing initial values of the states (0) 
0

x x , the recursive 
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process can be started from k = 0 and continues for any k=0, 1, …, (m-1).  During computation 

one can choose any length of h, without fixing its value by =
T

h
m

.  

The approximation error for both the cases can be defined in mean integral square error (MISE) 

with respect to exact state ( )tx  using the following equations   

 
2

0

1
MISE ( ) ( ) d

T
t t t

T
  x x1   and   

2

0

1
MISE ( ) ( ) d

T
t t t

T
  x x2                       (21)   

The method above mentioned can be implemented for online process by programming equations 

(19) or (20) using microprocessor or microcontroller [8].  

3.  Optimal control problem in Riccatti approach 

For the optimal control problem let the quadratic performance index of the time varying system 

(12) be             
0

1

2

ft
T TJ = t t t t t t dt   x Q x u R u                                             (22) 

where, Q is an nxn matrix, R is rxr matrix. The optimal feedback control law is given by,  

               t t t u k x*                                                                                         (23) 

where,        1 Tt t t tk R B P                                                                            (24) 

subjected to boundary condition ( = 0)t 
0

x x  and ( = ) 0
f

t t P                            (25) 

The matrix Riccati equation is 

     
 t

t t t
 

        
 

P
P P I   M

I
 ;    

       
   

1 T

T

t t t t
t

t t

 
  

   

B R B A
M

A Q
         (26) 

Differentiating (26),  

     
 

   
 

     t t tt t t t t t t
       

                        
          

P P PP P 0    M P I M P I   M
I I 0

       (27) 

Let us assume, for approximation, 1P P  in first order Taylor domain and 2P P  in second 

order Taylor domain. Equations (26) and subsequently (26), (27) is modeled as, 

     
 1

1 1
t

t t t
 

        
 

P
P P I   M

I
                                                                            (28) 

And      
 2

2 2
t

t t t
 

        
 

P
P P I   M

I
                                                                     (29) 

     
 

   
 

     2 2 22 2 2 2
t t tt t t t t t t

       
                       

          

P P PP P 0    M P I M P I   M
I I 0

     (30) 
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As, according to boundary condition ( = ) 0
f

t t P , and approximation of P is required within the 

span  0,
f

t t , we opt the recursion process using first and second order Taylor series in the 

retrogressive manner. Here, assumption is 1( ) ( ) 0
f f

t t P P  and 2( ) ( ) 0
f f

t t P P . Let, 

=
f

Tt  and  0,t T  is divided into m intervals of length h. 

Hence following (10) and (11), the equations below provide the approximation of P in first and 

second order Taylor domain as 1P  and 2P  respectively for k=(m-1), (m-2), …, 2, 1, 0., as, 

                   1 1 1 1 1kh k h h k h   P P P                                                            (31) 

    
          

2

2 2 1 2 1 2 1
2

h
kh k h h k h k h     P P P P

!
                          (32) 

Hence, using these formulae, estimation can be done starting right from ( = ) 0
f

t t P  of (25) to 

get an approximation in  0,t T  and thus for the last iteration it results 
0

( = 0)t P P . So, putting 

(28) in (31) results in 1P  and further putting (29) and (30) in (32) provides approximation 2P . 

Now, optimal gain k(t) can be structured using the equation (24) and can be compared with the 

exact gain. Here, the approximation of P, i. e., 1P  and 2P  results an approximation of k. Let it 

be assumed as 1k k  and 2k k  in first and second order Taylor domain respectively. So, (24) 

can be written as,        1 Tt t t t k1 R B P1   ;        1 Tt t t t k2 R B P2            (33) 

3.1. Optimal input and state approximation 
 

The optimal input (23) can be replaced in equation (12), and thereby the above state equation 

changes into a homogeneous equation as, 

   ( ) ( ) ( ) t tt t t


   k xx A B                                                                                           (34) 

Putting t=kh, where k=0, 1, …, (m-1) in (34) and in its differentiation,  

   ( ) ( )( ) kh kh kh khkh


   A B  k xx                                                                             (35) 

       ( ) ( ) ( ) ( ) ( ) ( )kh kh kh kh kh kh kh kh kh kh
     

       
 

B k x A B  kx A  k B x              (36) 

  Now, let (35) in first order Taylor domain be  

 ( ) ( )1( ) 1( )kh kh khkh kh


   A B  k1x x                                                                        (37) 

where, ( ) 1( )t tx x  and k=0, 2, 3, …, (m-1) as considered earlier and 1k k . And (35), (36) 

modeled in second order Taylor domain be 
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 ( ) ( )2( ) 2( )kh kh khkh kh


   A B  k2x x                                                                        (38) 

       ( ) ( ) ( ) ( ) ( ) ( )2 2( ) 2kh kh kh kh kh kh kh kh kh khkh
    

        
 

B 2 k2 A B  k2x A  k B x x        (39) 

where,  ( ) 2( )t tx x and  k=0, 2, 3, …, (m-1), and  2k k .  Hence, putting (37) in (17), 

  ( ) ( )1{( +1) } =  1( )kh kh khk h h kh  A B  k1x I x                                            (40) 

And substituting (38), (39) in (18) 

   
22

( ) ( ) ( ) ( )2{( +1) } =
2!

kh kh kh kh kh kh
h

k h h


         


A B  k2 A B  k2x I     

                                       
2

( ) ( ) ( ) 2( )
2!

kh kh kh kh kh
h

kh
   

   
  

 B k2A  k2 B x              (41) 

So, (40) and (41) are the state determined for optimal input via first and second order Taylor 

series respectively. Further, the optimal input u(t) is calculated modifying (23) as, 

     t t t u1 k1 x1*     and      t t t u2 k2 x2*                                                   (42) 

calling the approximation of  tu*
 in first and second order Taylor domain be  tu1

*
 and 

 tu2
*  respectively i. e.,    t tu u1* *  and    t tu u2* * .

 
 

4.    Numerical Example  

 Example 1. 

Consider the linear non-homogeneous time varying system [3] 

00 e
( ) ( ) ( )

10 0

t
t

t t t
 


   
   

  
x x + u  ; 

1
=

1

 
  

0
x(0) x  with step input                         (43) 

The time varying system given in this example is solved by using the recursive equations (19) 

and (20) subsequently. The solutions are shown in Table 1 along with the exact samples [8]. For 

computation, let, T = 1 s. and m = 10, so that h = T/m = 0.1 s. The comparison of the exact 

solution with approximations is shown in figure 1(a). Decreasing the step size h, obviously 

improves the accuracy of approximation with increased computational burden. The accuracy can 

be improvement for different values of m (m=10, m=20, m=40) in the solutions via first and 

second order Taylor series and hence percentage error for state x1 is shown in figure 1(b). Further, 

MISE using (21) for different m (m=10, m=20, m=40), shows improvement in Table 2. 

 

Example 2 

Consider the the time varying system [2, 7],      t t x t u tx


= +                                (44) 
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And quadratic performance index,    
1

2 2

0

1

2
J = x t u t dt                                     (45) 

Let, m=10 within t[0, 1] s., where, T=1 s. So, h = T/m = 0.1 s. Now, the approximate solution 

of optimal gains 1k  and 2k  is solved using equations (31-32) and is provided in the Table 3 

along with the exact optimal gain [7] and percentage error. Figure 2 shows the solution of k(t) via 

Taylor series and compares with the exact gain. In Table 4, the approximation of x and u 

calculated from equations (40), (42) and (41), (42) is shown using first and second order Taylor 

series respectively. 

Table 1: Recursive solution of the state x1 and state x2 obtained via first order and second order 

Taylor approximation [7] compared with the exact solution (for T=1 s, m=10 and h=0.1 s). 

 

Time 

(s.) 

Pointwise solution of state x1(t) Pointwise solution of state x2(t) 

Exact 

data 

Approximated data using Exact 

data 

 

Approximated data using 

first order 

Taylor series 

second order 

Taylor series 

first order 

Taylor series 

second order 

Taylor series 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1/10 1.0050 1.0000 1.0050 1.1000 1.1000 1.1000 

2/10 1.0198 1.0100 1.0199 1.2000 1.2000 1.2000 

3/10 1.0441 1.0296 1.0443 1.3000 1.3000 1.3000 

4/10 1.0774 1.0585 1.0777 1.4000 1.4000 1.4000 

5/10 1.1190 1.0960 1.1194 1.5000 1.5000 1.5000 

6/10 1.1681 1.1415 1.1686 1.6000 1.6000 1.6000 

7/10 1.2241 1.1942 1.2247 1.7000 1.7000 1.7000 

8/10 1.2861 1.2533 1.2868 1.8000 1.8000 1.8000 

9/10 1.3532 1.3180 1.3541 1.9000 1.9000 1.9000 

10/10 1.4248 1.3875 1.4259 2.0000 2.0000 2.0000 
 

Table 2: MISE for the approximation of state x1 and state x2 obtained via first order and second 

order Taylor series for different m and T=1 s. 
 

 number of recursion 

points (m) and length 

of intervals (h) 

For states x(t) Approximation Error (MISE) using 

Taylor series of 

First order  Second order  

m=10; h=0.1 s. State x1(t) 10-3x0.5581 10-5 x0.1163 

State x2(t) 0 0 

m=20; h=0.05s. State x1(t) 10-4x0.2225 10-7x0.2898 

State x2(t) 0 0 

m=40; h=0.025 s. State x1(t) 10-6x0.7510 10-9x0.8386 

State x2(t) 0 0 
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(a)                                                                               (b) 

Fig. 1: (a)The exact solution along with first and second order approximation (Taylor1 and Taylor2) 

for T=1 s and m=10 and (b) The % error for state x1 considering m=10, m=20, m=40. 
 

 

Fig. 2: The exact optimal gain k along with its approximation via (a) first order Taylor series 

(Taylor1) and second order Taylor series (Taylor2) for T=1 s and m=10 
 

4. Conclusions 

     The proposition establishes recursive method using first and second order Taylor series. 

Although, higher order Taylor expansion may be opted, but, for practical realization, terms upto 

second derivative is good enough to choose. Conventionally, the state analysis is done via Taylor 

series [2-4] using operational matrix of integration of fixed dimension depending on h or m.  In  

this  respect,  as  this   method   does  not  involve  operational  matrices, it  is  not necessary to 

fix the interval length and hence one can easily change h or m during iteration performing a 

dynamic computation. This flexibility makes the algorithm more reasonable to choose.  

 



127 

 

Table 3: Recursive solution of the optimal gain k(t) obtained via first order and second order Taylor 

approximation compared with the exact solution (for T=1 s, m=10 and h=0.1 s). 

Time 

(s.) 

Pointwise solution of optimal gain k(t) Percentage error in 

Exact 

data 

Approximated data using first order 

Taylor 

domain 

second order 

Taylor 

domain 
first order 

Taylor series 

second order 

Taylor series  

0 0.969 0.927 0.956 4.359 1.334 

1/10 0.954 0.909 0.945 4.664 0.895 

2/10 0.911 0.867 0.910 4.787 0.146 

3/10 0.843 0.799 0.846 5.183 -0.377 

4/10 0.753 0.707 0.755 6.127 -0.210 

5/10 0.637 0.595 0.641 6.648 -0.570 

6/10 0.508 0.470 0.509 7.531 -0.274 

7/10 0.372 0.340 0.371 8.474 0.322 

8/10 0.235 0.215 0.235 8.511 0.191 

9/10 0.110 0.100 0.109 9.091 0.909 

10/10 0.000 0.000 0.000 - - 
 

 

Table 4: Recursive solution of x(t) and u(t) with the exact solution (for T=1 s, m=10 and h=0.1 s). 

Time 

(s.) 

Solution of state x(t) using Solution of input u(t) using 

first order 

Taylor series 

second order 

Taylor series 

first order 

Taylor series 

second order 

Taylor series  

0 1.000 1.000 -0.927 -0.956 

1/10 0.907 0.909 -0.825 -0.860 

2/10 0.834 0.837 -0.723 -0.761 

3/10 0.778 0.781 -0.622 -0.661 

4/10 0.739 0.741 -0.523 -0.560 

5/10 0.717 0.718 -0.426 -0.460 

6/10 0.710 0.712 -0.333 -0.362 

7/10 0.719 0.722 -0.245 -0.268 

8/10 0.745 0.750 -0.160 -0.176 

9/10 0.789 0.798 -0.079 -0.087 

10/10 0.852 0.868 0.000 0.000 

 

Moreover, this procedure being recursive, avoids the complexity of handling large matrices and 

its inversion too unlike Kronecker product approach. The memory requirement and time 

consumption during computation is reduced considerably in this context. In optimal control 

problem for the method proposed by Radhoush et al [7] the approximated value of k is nearly 

same with the exact data using Chebyshev wavelet, but it approaches through Kronecker product 

and has complexity in computation, whereas this method results the samples of optimal gain with 

a little bit of error more but still proves to be stronger because of its simplicity with less 
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computation time. Even, the degree of Chebyshev polynomial [7] had been chosen as 4. Further 

compared to another method [2] where Taylor series has been employed with higher order and 

produces still more erroneous results, this algorithm only upto second order derivative term is 

way better in this sense.  So, the recursive approach with only first and second order Taylor series 

is more attractive because of its straightforward nature and reliability as well. 
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